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Abstract

In this paper, based on Mindlin’s theory of thick plates, using Hamiltonian formulism, the elastic wave propagation and

localized vibration in narrow plates with free boundary conditions are investigated. The existence of localized vibration

mode and propagation mode is analyzed. The dispersion relation of propagation modes in strip plates is deduced from

eigenfunction expansion method. And it is compared with the dispersion relation that is gained using Mindlin’s thick plate

theory. Based on the two kinds of theories, dispersion relation curves differ much under short wave. Cutoff frequencies are

higher under Hamilton formulism. But dispersion curves are almost same under long wave.

r 2006 Published by Elsevier Ltd.
1. Introduction

The classical theory of thin plates has been deduced by Lagrange–German in 19th century. It has limitation
when the classical theory is applied to analyze dynamic elasticity under free boundary conditions. Sometimes,
it cannot satisfy boundary conditions at angular points. In the middle of 20th century, Reissner put forward
the static equation of plates and in that the effect of transverse shear deformations are accounted [1,2].
Subsequently, Mindlin undertook a systematic investigation of dynamics of a plate. The Mindlin theory is a
better approximation of the underlying mechanics in a thin plate, but introduces analytical complications as
compared with the simpler formulation. Midlin’s theory contains two rotations as field variables in addition to
the transverse displacement and includes rotary inertia and shear effects which are ignored in the Kirchhoff
theory [3,4]. It makes up insufficiency of the classical plate theory to some degree. It can be used in a large
range of the frequency. So the analytic result is close to practical result in engineering [6,7].

With the development of modern science and technology, composite structure is usually applied to
engineering. Transverse shearing modules of composite plate are usually small, so thick plate theory ought to
be used in dynamical analysis. Meanwhile, strip plate is applied to aircraft structure and large-scale building
structure. Strip plate is usually simplified to beam in structural analysis and vibration control. In classical
Kirchhoff and Euler–Bernoulli theory [8,9], flexural wave numbers of rectangle beam or plate are
ee front matter r 2006 Published by Elsevier Ltd.
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k ¼ ðrho2=DÞ1=4. Plate theory adopts plane stress hypothesis and here the beam theory is based on uniaxial
stress hypothesis. Uniaxial stress hypothesis is reasonable for small sectional components, like, beam and rod.
Uniaxial stress hypothesis results in error, even structure vibration instability, so further research is needed.

In the past, semi-analytic method was applied to solve bending vibration of plates. This method has many
limitations, such as the difficulty in analyzing complicated boundary value problems and cannot lose any
mode of motion. Using Hamiltonian formulation the problem, which may not be solvable by the classical
method, can be solved [10–12].

In this paper, based on Mindlin’s theory of thick plates, using Hamiltonian formulation, the elastic wave
propagation and localized vibration in narrow plates with free boundary conditions are investigated. The
existence of localized vibration mode and propagation mode are analyzed. The dispersion relation of elastic
waveguide in the plates is given at free boundary value. As examples, numerical results of dispersion relations
in the plates are graphically presented.
2. State vectors of elastic plates

By using Mindlin’s theory of plates, in rectangular coordinate system the displacement components ux; uy; uz

are given by [5,12]

ux ¼ �zjxðx; y; tÞ; uy ¼ �zjyðx; y; tÞ; uz ¼ wðx; y; tÞ, (1)

where w is transverse displacement jx and jy refer to rotation about x- and y-axis of normal line in xz and yz

plane, respectively. h is the height of the plate. wðx; y; tÞ, jx and jy are shown in Fig. 1. So bending moment
and shear in plates can be expressed as follows:

Mx ¼

Z h=2

�h=2
zsx dz ¼ �D

qjx

qx
þ v

qjy

qy

� �
, (2a)

My ¼

Z h=2

�h=2
zsy dz ¼ �D

qjy

qy
þ v

qjx

qx

� �
, (2b)

Mxy ¼Myx ¼

Z h=2

�h=2
zsxy dz ¼ �

ð1� vÞ

2
D

qjy

qx
þ

qjx

qy

� �
, (2c)

Qx ¼

Z h=2

�h=2
sxz dz ¼ C

qw

qx
� jx

� �
, (2d)

Qy ¼

Z h=2

�h=2
syz dz ¼ C

qw

qy
� jy

� �
, (2e)
y

w

x

z �y

�x

Fig. 1. Mindlin’s plate.
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where D is bending rigidity of plates, D ¼ Eh3=12ð1� n2Þ, C ¼ kGh, G ¼ Eh=2ð1þ nÞ, where k is shear
reduced coefficient, k ¼ p2=12.

For using Hamilton formulism, the coordinate x is analog to time variable. Thus in state space, generalized
displacement variables q ¼ ðw;jx;jyÞ

T, generalized velocity _q ¼ qq=qx ¼ ð _w; _jx; _jyÞ
T. Using expression of

strain energy and kinetic energy of plates, Lagrangian density function is given by

Lðq; _qÞ ¼
1

2
D _j2

x þ
qjy

qy

� �2

þ 2n _jx

qjy

qy

" #
þ

Gh3

24

qjx

qy
þ _jy

� �2

þ
1

2
C ð _w� jxÞ

2
þ

qw

qy
� jy

� �2
" #

þ
1

2
rho2w2 þ

1

2
rJo2j2

x þ
1

2
rJo2j2

y, ð3Þ

where J is the rotary inertia of plates J ¼ h3=12. r is density, o is frequency.
In phase space, generalized displacement and generalized momentum refer to q ¼ ðw;jx;jyÞ

T,
p ¼ ðpw; pjx

; pjy
Þ
T, respectively. The components of generalized momentum are given by

pw ¼
qLðq; _qÞ

q _w
¼ Qx, (4a)

pjx
¼

qLðq; _qÞ

q _jx

¼ �Mx, (4b)

pjy
¼

qLðq; _qÞ

q _jy

¼ �Mxy. (4c)

The generalized velocity is denoted by generalized displacement and momentum. From Eq. (2) and the
Hamiltonian formulism, the following expression can be obtained:

_w ¼
1

C
Qx þ jx, (5a)

_jx ¼ �
1

D
Mx � n

qjy

qy
, (5b)

_jy ¼ �
2

ð1� nÞD
Mxy �

qjx

qy
. (5c)

The Hamiltonian function of flexural vibration of plates is given by [9]

Hðq; pÞ ¼ pT _q� Lðq; _qÞ ¼
1

2

1

C
Q2

x þQxjx þ
1

2

1

D
M2

x þ nMx

qjy

qy
þ

1

ð1� nÞD
M2

xy þMxy

qjx

qy

�
1

2
Dð1� n2Þ

qjy

qy

� �2

�
1

2
C

qw

qy
� jy

� �2

�
1

2
rho2w2

�
1

2
rJo2j2

x �
1

2
rJo2j2

y. ð6Þ

Let the state variable be given by v ¼ ðq; pÞT ¼ ðw;jx;jy;Qx;�Mx;�MxyÞ
T

_pw ¼ �
qH

qw
¼ �C

q2w

qy2
�

qjy

qy

� �
þ rho2w, (7a)

_pjx
¼ �

qH

qjx

¼ �Qx þ
qMxy

qy
þ rJo2jx, (7b)
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_pjy
¼ �

qH

qjy

¼ � C
qw

qy
�Dð1� n2Þ

q2jy

qy2

 !
þ Cjy þ rJo2jy þ n

qMx

qy
. ð7cÞ

In phase space, from Eqs. (5) and (7). Single-frequency flexural wave of plates can be written:

_v ¼ Hv ¼ mv, (8)

where

H ¼

0 1 0 1=C 0 0

0 0 �nq=qy 0 1=D 0

0 �q=qy 0 0 0 2=ð1� nÞD

�Cq2=qy2 � rho2 0 Cq=qy 0 0 0

0 �rJo2 0 �1 0 �q=qy

�Cq=qy 0 �ð1� n2ÞDq2=qy2 þ C � rJo2 0 �nq=qy 0

2
6666666664

3
7777777775
.

The relation of cross eigenvalue l and longitudinal eigenvalue m are given by

ðm2 þ l2 þ k2
1Þ ðm

2 þ l2 þ k2
2Þ ðm

2 þ l2 þ k2
3Þ ¼ 0. (9a)

So

l2n ¼ �m
2 � k2

n ðn ¼ 1; 2; 3Þ, (9b)

where

k4
1;2 �

Drho2 þ CrJo2

CD
k2
1;2 þ

rho2ðrJo2 � CÞ

CD
¼ 0, (10a)

k2
3 ¼

2ðrJo2 � CÞ

Dð1� nÞ
. (10b)

2.1. Definition of zero eigensolution

Zero eigenvalue is important in elastic mechanics. For elastodynamics of rectangle domain, it will have the
solution of zero eigenvalue under free boundary conditions. Then the following equation is satisfied:

Hcð0Þ ¼ 0, (11)

_v ¼ Hv; v ¼ ½w;jx;jy;Qx;�Mx;�Mxy�
T.

When the two sides of plates are free, expressions for boundary conditions are given by

Dð1� n2Þ
qjy

qy
� nMx ¼ Dð1� n2Þ

qq3

qy
þ np2 ¼ 0, (12a)

qw

qy
� jy ¼

qq1

qy
� q3 ¼ 0, (12b)

�Mxy ¼ p3 ¼ 0. (12c)

After analyzing, linear independent basic eigensolutions is given by

cð1Þ0 ¼ ðw; 0;jy; 0;�Mx; 0Þ
T, (13a)



ARTICLE IN PRESS
H. Chao et al. / Journal of Sound and Vibration 306 (2007) 389–399 393
cð2Þ0 ¼ ð0;jx; 0;Qx; 0;�MxyÞ
T, (13b)

where

w ¼ w
ð1Þ
0 ¼

Dð1� nÞk2
3 � 2Dk2

1

2Ck1

� �
cos ðk1yÞ þ

Dð1� nÞk2
3 � 2Dk2

2

2Ck2

� �
d cos ðk2yÞ,

d ¼ dðk1; k2Þ ¼ �
k1 cos ðk1aÞ

k2 cos ðk2aÞ
; jx ¼ jð2Þx0 ¼ cos ðk3yÞ; jy ¼ jð1Þy0 ¼ sinðk1yÞ þ d sinðk2yÞ,

Qx ¼ Q
ð2Þ
x0 ¼ �C cos ðk3yÞ; Mx ¼M

ð1Þ
x0 ¼ �nDk1 cos ðk1yÞ � nDk2d cosðk2yÞ,

Mxy ¼M
ð2Þ
xy0 ¼

ð1� nÞD
2

k3 sin ðk3yÞ.

For satisfying the boundary conditions, we must have k3a ¼ np. cð2Þ0 satisfies Eqs. (12a) and (12b).
For Eq. (12c) to be satisfied vibration frequency of plates is given by

o2 ¼
1

rJ
ð1� nÞD

n2p2

2a2
þ C

� �
ðn ¼ 0; 1; 2; . . .Þ. (14)

According to boundary conditions of plates, when vibration has the relation k1,2, frequency obtained

o2 ¼
D

rJ

k2
1k2 tanðk1aÞ � k1k2

2 tanðk1aÞ

k2 tanðk1aÞ � k1 tanðk2aÞ
. (15)

Then, Jordan zero-order eigenvectors are given by

v
ð1Þ
0 ¼ cð1Þ0 , (16a)

v
ð2Þ
0 ¼ cð2Þ0 . (16b)

The v
ð1Þ
0 and v

ð2Þ
0 denote a kind of vibration mode. It is not propagation in the x direction, i.e., standing wave

is homogeneous along x-axis and oscillatory along y-axis. Transverse displacements of cð1Þ0 is w, the
corresponding rotational angle is jy and bending moment is Mx. The c

ð2Þ
0 has the rotation angle jy, shear Qx

and bending moment Mxy.
First-order zero eigenvector cð1Þ1 satisfies

Hcð1Þ1 ¼ cð1Þ0 , (17)

cð1Þ1 ¼ ð0;jx; 0;Qx; 0;�MxyÞ
T, (18)

where

jx ¼ jð1Þx1 ¼ �
1

k1
cos ðk1yÞ � d

1

k2
cos ðk2yÞ; Mx ¼M

ð1Þ
xy1 ¼ �Dð1� nÞ sinðk1yÞ � dDð1� nÞ sinðk2yÞ,

Qx ¼ Q
ð1Þ
x1 ¼

Dð1� nÞk2
3 � 2Dk2

1 � 2C

2k1
cos ðk1yÞ þ d

Dð1� nÞk2
3 � 2Dk2

2 � 2C

2k2
cos ðk2yÞ.

A solution of the original equation is

v
ð1Þ
1 ¼ cð1Þ1 þ xcð1Þ0 , (19a)

v
ð1Þ
1 ¼ ½xw

ð1Þ
0 ;j

ð1Þ
x1 ;xj

ð1Þ
y0 ;Q

ð1Þ
x1 ;�xM

ð1Þ
xy0;�M

ð1Þ
xy1�

T. (19b)

The v
ð1Þ
1 is a kind of non-propagation vibration mode. It denotes rigidity rotation in xoz plane. Through

analysis, the sub-eigensolution chain can be obtained until cð1Þ2 break off.
For seeking the first-order zero eigenvector cð2Þ1 we have

Hcð2Þ1 ¼ cð2Þ0 , (20)



ARTICLE IN PRESS
H. Chao et al. / Journal of Sound and Vibration 306 (2007) 389–399394
cð2Þ1 ¼ ðw; 0;jy; 0;�Mx; 0Þ
T, (21)

where

w ¼ w
ð2Þ
1 ¼

1

ðk2
s � k2

3Þ
1þ

2C � ð1þ nÞDðk2
3 � k2

s Þ

2Dvðk2
3 � k2

s Þ � 2C
� �

( )
cos ðk3yÞ,

jy ¼ jð2Þy1 ¼
2C � ð1þ nÞDðk2

3 � k2
s Þ

2Dvðk2
3 � k2

s Þ � 2C
� �

k3

sin ðk3yÞ,

Mx ¼M
ð2Þ
x1 ¼ �D 1þ n

2C � ð1þ nÞDðk2
3 � k2

s Þ

2Dvðk2
3 � k2

s Þ � 2C
� �

" #
cos ðk3yÞ.

A solution of the original equation is

v
ð2Þ
1 ¼ cð2Þ1 þ xcð2Þ0 , (22a)

v
ð2Þ
1 ¼ ½w

ð2Þ
1 ;xj

ð2Þ
x0 ;j

ð2Þ
y1 ; xQ

ð2Þ
x0 ;�M

ð2Þ
xy1;�xM

ð2Þ
xy0�

T. (22b)

The v
ð2Þ
1 is also a kind of non-propagation vibration mode. It denotes rigidity rotation in xoz plane. Through

analysis, the sub-eigensolution chain can be obtained until cð2Þ2 break off.
For zero eigenvalue, the dynamical mode corresponds to the modal frequency of vibration in plates. For

example, the first modal frequency is referred to as inherent frequency in engineering. Then integrals of all
mechanical variables are equal to zero along y-axis.

2.2. Definition of nonzero eigensolution

Considering symmetrical condition, the eigensolution of flexural vibration of symmetrical plates cn ¼

ðqn; pnÞ
T is written as

w ¼ A11 coshðl1yÞ þ A12 coshðl2yÞ þ A13 coshðl3yÞ, (23a)

jx ¼ A21 coshðl1yÞ þ A22 coshðl2yÞ þ A23 coshðl3yÞ, (23b)

jy ¼ A31 sinhðl1yÞ þ A32 sinhðl2yÞ þ A33 sinhðl3yÞ, (23c)

Qx ¼ A41 coshðl1yÞ þ A42 coshðl2yÞ þ A43 coshðl3yÞ, (23d)

�Mx ¼ �A51 coshðl1yÞ � A52 coshðl2yÞ � A53 coshðl3yÞ, (23e)

�Mxy ¼ �A61 sinhðl1yÞ � A62 sinhðl2yÞ � A63 sinhðl3yÞ, (23f)

where l2n ¼ �m
2 � k2

n; Amnðm ¼ 1; 2; . . . 6; n ¼ 1; 2; 3Þ are mode coefficients and they are not independent.
Based on analysis, we see only three coefficients are independent.

Substituting Eq. (23) into Eq. (8), the relational expressions of mode coefficients can be obtained:

A2n

A1n

¼
m 2CðDk2

n � rJo2Þ �Dð1þ nÞrho2
� �

Dð1� nÞðDk2
n � rJo2Þðk2

n � k2
3Þ

;
A3n

A1n

¼
ln 2CðDk2

n � rJo2Þ �Dð1þ nÞrho2
� �
Dð1� nÞðDk2

n � rJo2Þðk2
n � k2

3Þ
,

A4n

A1n

¼
mro2 Dhð1� nÞðDk2

n � rJo2Þ þ 2CðDðh� Jk2
nÞ þ rJ2o2

� �
Dð1� nÞðDk2

n � rJo2Þðk2
n � k2

3Þ
,

A6n

A1n

¼
mlnDð1� nÞ Dð1þ nÞrho2 � 2CðDk2

n � rJo2Þ
� �

Dð1� nÞðDk2
n � rJo2Þðk2

n � k2
3Þ

; ðn ¼ 1; 2Þ,

A13 ¼ 0;
A33

A23
¼
�m
l3
;

A43

A22
¼ �C;

A53

A23
¼ �mDð1� nÞ;

A63

A23
¼

Dð1� nÞð2m2 þ k2
3Þ

2l3
.
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To simplify the expression, the following relations will be used:

2CðDk2
� rJo2Þ �Dð1þ nÞrho2

� �
ðDk2

� rJo2Þ
¼

2C2 �Dð1þ nÞðCk2
� rho2Þ

� �
C

.

The equation of eigenvalue under free boundary conditions is given by

l1k2
1½2k2

1 � k2
s ð1� vÞ��1fCk2

2k2
s þDðk2

2 � k2
s Þ½k

2
1k2

2 þ ð1� vÞm2�gfDm2ð1� vÞ½k2
s ð1� vÞ � 2k2

1�

þ 2k2
s ½C �Dðk2

1 � k2
s Þ�n

2 � 2Dk2
1k

2
2ð1� n2Þ þDk2

2k
2
s ð1� n� 4n2 þ 2n3Þgc tanhðl2aÞ

� l2k
2
2½2k2

2 � k2
s ð1� vÞ��1fCk2

1k
2
s þDðk2

1 � k2
s Þ½k

2
1k2

2 þ ð1� vÞm2�gfDm2ð1� vÞ½k2
s ð1� vÞ � 2k2

2�

þ 2k2
s ½C �Dðk2

2 � k2
s Þ�n

2 � 2Dk2
1k

2
2ð1� n2Þ þDk2

1k
2
s ð1� n� 4n2 þ 2n3Þgc tanhðl1aÞ þD2ð1� vÞ2

� l1l2l3ðk
2
1 � k2

2Þk
4
sm

2c tanhðl3aÞ ¼ 0, ð24aÞ

where k2
s ¼ rho2=C. Considering existence of waveguide along x-axis, from Eq. (24a), and defining m by

m ¼ ik, a dispersion relation by using Hamilton formulism are obtained. Here k is wave number of elastic
waves in plates.

Using Mindlin’s plate theory the dispersion relations of flexural waves in strip plates can be presented as

k2
�

k2
1

1� v

� �2

ðk2
s � k2

1Þk
2
2l
�1
1 c tanhðl1aÞ � ðk2

�
k2
2

1� v
Þ
2
ðk2

s � k2
2Þk

2
1l
�1
2 c tanhðl2aÞ

þ k2k2
s ðk

2
1 � k2

2Þl3c tanhðl3aÞ ¼ 0. ð24bÞ

In Figs. 2–7, c is phase velocity. Figs. 2, 4 and 6 represent dispersion relations of flexural waves in strip
plates by using Hamilton formulism. Figs. 3, 5 and 7 show dispersion relations of flexural waves of strip plates
under Mindlin theory. Comparing the dispersion relations of flexural waves under two kinds of theories, it is
easy to get some results: dispersion relations have great differences under short wave, namely, anterior some
low frequency modes have differences in some degree. Cutoff frequencies are higher under Hamilton
formulation. Dispersion relations are almost same under long wave, namely high-frequency mode has
difference [13].
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Fig. 2. Dispersion relations of flexural wave in strip plates.
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Fig. 3. Dispersion relations of flexural wave in strip plates.
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Fig. 4. Dispersion relations of flexural wave in strip plates.
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3. Analyses and discussion

It can be seen that when dynamics of elastic plates are considered, the translation of rigid body and static
rotation do not exist, but non-propagation modes exist. For example, the oscillation which is standing waves
at y-axis direction is homogeneous on x-axis.

Based on the Hamiltonian formulism, beside the extended mode at the x direction can be determined; the
localized vibration also can be sought. But using Mindlin’s theory of plates the extended mode can be
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Fig. 5. Dispersion relations of flexural wave in strip plates.
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Fig. 6. Dispersion relations of flexural wave in strip plates.
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determined only, the some of localized vibrations may be lost. Although Mindlin’s theory of plates has
limitations, it can be used to analyze the dynamics of plates at high frequencies.

The dynamical mode of zero eigenvalues corresponds with free frequency of vibrations in general
mechanics. For example, the frequency of the first mode in engineering is treated as free frequency of structure
in some cases. But integral of any mechanical quantity is zero along the y direction.
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Fig. 7. Dispersion relations of flexural wave in strip plates.
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For non-zero eigenvalues, when imaginary part is greater than zero and real part is less than zero, it denotes
propagation decaying modes in x-axis positive direction, or the unstable state of resonance. When imaginary
part is less than zero and real part is greater than zero, it indicates decaying propagation modes in x-axis
negative directions, or else the accumulable state of energy.

When the real part is equal to zero, it represents the propagation mode in x-axis, positive or negative
direction. When the real part is less than zero, it expresses localized vibrations.

When the real part is greater than zero, it denotes destabilization of the resonance. Then the vibration
frequency of structures must satisfy dispersion relations, namely, circular frequency of vibrations, wave
number of incident waves, and geometric parameters of structures must fit the dispersion equation.

The analytical method and numerical results in this paper are expected to apply to dynamics and vibration
control of aircraft structures.
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